实现电压可调的高压偏置模块制作方案
许多仪器和检测设备如射线、超声、APD 等,在工作中都需要高压偏置电源。根据探测器的不同,需要的偏置电压有正有负,其电压从几十伏至数百伏,而驱动能力一般在几个 mA 到几十 mA。目前市场上广为采用的方法是以变压器形式作为升压电路,将电源升高至相应数值的高压,为相应的设备或者仪器提供偏置高压。
由于变压器是电路的核心器件,而变压器又是线圈及骨架的结构,其包括上千圈的线圈,体积较大且质量重,无法应用于体积较小的设备,如辐射剂量仪、便携式设备、可穿戴设备等。本文将为大家介绍使用 ADI 的 LT8331 器件,解决以上顾虑,方便快捷地实现高压偏置。
高压偏置电路技术方案
高压偏置模块的升压部分采用 ADI 的 LT8331 芯片,该芯片特点如下:
- 可升压 / SEPIC / 负输出
- 4.5V 至 100V 输入电压范围,内部集成功率开关管 (0.5A、140V)
- 100kHz 至 500kHz 可编程的开关频率,可编程的欠压闭锁 (UVLO) 等
同系列产品 LT833X,LT836X 等,如下表 (表1) 所示。
产品型号 | Vin (min) V | Vin (max) V | Switch Current (typ) A | Vout Max (typ) V |
LT8333 | 2.8 | 40 | 3 | 40 |
LT8334 | 2.8 | 40 | 5 | 40 |
LT8337 | 2.7 | 28 | 6 | 28 |
LT8338 | 3 | 40 | 1.4 | 40 |
LT8336 | 2.7 | 40 | 3 | 40 |
LT8365 | 2.8 | 60 | 2 | 150 |
LT8361 | 2.8 | 60 | 2.5 | 100 |
LT8362 | 2.8 | 60 | 2.5 | 60 |
LT8364 | 2.8 | 60 | 5 | 60 |
LT8335 | 3 | 25 | 2.5 | 28 |
LT8331 | 4.5 | 100 | 0.5 | 140 |
LT8330 | 3 | 40 | 1.2 | 60 |
表1 高压偏置内部开关选型简表
高压 ±120V 输出方案
为快速展示效果,本文基于 LT8331 芯片且使用 LTspice 仿真工具,设计一款输入电压 12V, +120V 或-120V 高压偏置电路。200K 开关频率、VIN = 12V、VOUT = 120V 升压转换电路,如下图 (图1) 所示:
200K 开关频率、VIN = 12V、VOUT = -120V 升压转换电路,如下图 (图2) 所示:
LTspice 是一款由 ADI 推出的高性能 SPICE 仿真器软件,如需了解软件下载、入门指南、以及具体的设计仿真攻略等,请查阅《活学活用 LTspice 进行电路设计系列合集》。
实现电压动态调节技术
在实际运用中,高压偏置的器件如 APD 等热阻的原因,为保证仪器仪表的精度,需要高压偏置实现动态可调。如下图 (图3) 所示,V2 用于产生控制电压,运算放大器 LTC6084 用于提供增益。其中 V2 可以使用电位器或 DAC;V2 如为双极性时,对应运算放大器使用双极性供电。
基尔霍夫电流/电压定律
以下介绍两种计算方法,KCL 法和 KVL 法,KCL 为基尔霍夫电流定律,KVL 为基尔霍夫电压定律。
基尔霍夫电流定律
计算方法 1:KCL 法,VFB 点电流流入流出相等。
A1 + A2 = A3 ---- ①
A1 = (VDAC1-VFB) / R6 --- ②
A2 = (VOUT-VFB) / R1 --- ③
A3 = VFB / R5 --- ④
VDAC1 = VDAC = 2V --- ⑤
VFB = -0.8V --- ⑥
VFB 电压:+输出时 VFB 为 1.6V ,-输出时 VFB 为 -0.8V,计算得 VOUT = 148.2V
基尔霍夫电压定律
计算方法 2:KVL 法,VOUT1 为 R1,R5 反馈回路,DAC 回路断开;VOUT2 为 DAC 与 R5 作用反馈回路,R5 断开,A1 = -A2。
VOUT = VOUT1 + VOUT2 --- ①
VOUT1 = VFB * (R1 + R5) / R5 ---- ② = -120.2V
VOUT2 / R1 = (VFB - VADC) / R6 ---③ *注 A1= -A2。
VOUT2 = (VFB - VADC) *R1 / R6 = -28V
VOUT1 与 VOUT2 代入式 ①,得 VOUT = 148.2V。如下图 (图4) 所示,LTspice 仿真结果与计算相符。
通过比较以上两种计算方法,可以看出第二种计算方法更容易发现,VOUT1 设定固定后,通过控制 V2 的电压实现电压调节,即在 VOUT1 上叠加 VOUT2。另外,高压偏置电路在实际运用中,根据探测器工作时长、发热导致内阻的变化、实时的调节电压,已达测试设备最佳的测试精度。
电路设计注意事项
考虑驱动能力,输出功率 = 输入功率 X 转化效率。LT8331 为 0.5A 功率开关管,例如输入电压 24V,即输入功率为 12W,输出为 120V,效率为 70,那么输出驱动能力 7mA。 如需更高偏置电压,则输出端得增加多级倍压电路,如下图 (图5) 所示:
总结
本文介绍使用 ADI 的 LT8331 器件,它具有高压偏置,外围电路简单,使用灵活等优势,解决体积大、质量重、节约开发周期长等问题。欲了解更多技术细节和 ADI 相关方案,您可以点击下方「联系我们」,提交您的需求,我们澳门人巴黎人1797公司愿意为您提供更详细的技术解答。